skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mashayekhi, Ghoncheh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Biomolecules undergo continuous conformational motions, a subset of which are functionally relevant. Understanding, and ultimately controlling biomolecular function are predicated on the ability to map continuous conformational motions, and identify the functionally relevant conformational trajectories. For equilibrium and near-equilibrium processes, function proceeds along minimum-energy pathways on one or more energy landscapes, because higher-energy conformations are only weakly occupied. With the growing interest in identifying functional trajectories, the need for reliable mapping of energy landscapes has become paramount. In response, various data-analytical tools for determining structural variability are emerging. A key question concerns the veracity with which each data-analytical tool can extract functionally relevant conformational trajectories from a collection of single-particle cryo-EM snapshots. Using synthetic data as an independently known ground truth, we benchmark the ability of four leading algorithms to determine biomolecular energy landscapes and identify the functionally relevant conformational paths on these landscapes. Such benchmarking is essential for systematic progress toward atomic-level movies of continuous biomolecular function. 
    more » « less
  2. A promising new route for structural biology is single-particle imaging with an X-ray Free-Electron Laser (XFEL). This method has the advantage that the samples do not require crystallization and can be examined at room temperature. However, high-resolution structures can only be obtained from a sufficiently large number of diffraction patterns of individual molecules, so-called single particles. Here, we present a method that allows for efficient identification of single particles in very large XFEL datasets, operates at low signal levels, and is tolerant to background. This method uses supervised Geometric Machine Learning (GML) to extract low-dimensional feature vectors from a training dataset, fuse test datasets into the feature space of training datasets, and separate the data into binary distributions of “single particles” and “non-single particles.” As a proof of principle, we tested simulated and experimental datasets of the Coliphage PR772 virus. We created a training dataset and classified three types of test datasets: First, a noise-free simulated test dataset, which gave near perfect separation. Second, simulated test datasets that were modified to reflect different levels of photon counts and background noise. These modified datasets were used to quantify the predictive limits of our approach. Third, an experimental dataset collected at the Stanford Linear Accelerator Center. The single-particle identification for this experimental dataset was compared with previously published results and it was found that GML covers a wide photon-count range, outperforming other single-particle identification methods. Moreover, a major advantage of GML is its ability to retrieve single particles in the presence of structural variability. 
    more » « less
  3. null (Ed.)
  4. Abstract A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations. 
    more » « less